
J .  Fluid Mech. (1995), vol. 289, pp. 319405 
Copyright @ 1995 Cambridge University Press 

379 

Wavenumber transport: scattering of small-scale 
internal waves by large-scale wavepackets 

By D A V I D  L. BRUHWILER'AND TASSO J. KAPER2 
Grumman Research and Development Center, 4 Independence Way, Princeton, 

NJ 08540, USA 
2Department of Mathematics, Boston University, 11 1 Cummington Street, Boston, 

MA 02215, USA 

(Received 2 August 1994 and in revised form 29 November 1994) 

In this work, we treat the problem of small-scale, small-amplitude, internal waves 
interacting nonlinearly with a vigorous, large-scale, undulating shear. The ampli- 
tude of the background shear can be arbitrarily large, with a general profile, but 
our analysis requires that the amplitude vary on a length scale longer than the 
wavelength of the undulations. In order to illustrate the method, we consider the ray- 
theoretic model due to Broutman & Young (1986) of high-frequency oceanic internal 
waves that trap and detrap in a near-inertial wavepacket as a prototype problem. 
The near-inertial wavepacket tends to transport the high-frequency test waves from 
larger to smaller wavenumber, and hence to higher frequency. We identify the 
essential physical mechanisms of this wavenumber transport, and we quantify it. 
We also show that, for an initial ensemble of test waves with frequencies between 
the inertial and buoyancy frequencies and in which the number of test waves per 
frequency interval is proportional to the inverse square of the frequency, a single 
nonlinear wave-wave interaction fundamentally alters this initial distribution. Af- 
ter the interaction, the slope on a log-log plot is nearly flat, whereas initially it 
was -2. Our analysis captures this change in slope. The main techniques em- 
ployed are classical adiabatic invariance theory and adiabatic separatrix crossing 
theory. 

1. Introduction 
Resonant wave-wave interactions are ubiquitous in nature. They occur in plasmas, 

in shallow water, between surface waves, in the atmosphere, and in the ocean, to 
list a few of the many places. In this work, we focus on a class of oceanic wave- 
wave interactions involving small-scale waves and vigorous, large-scale, oscillating 
background flows. We develop a method to quantitatively analyse the wavenumber 
transport for the small-scale waves as they interact with the velocity field of the 
background flow. The method relies on ray theory as well as adiabatic separatrix 
crossing theory. 

In order to illustrate the method's utility, we apply it directly to the idealized, 
ray-theoretic model formulated and studied in Broutman & Young (1986, hereinafter 
referred to as B&Y), for the strongly nonlinear interaction between high-frequency, 
short-wavelength internal waves and localized packets of progressive near-inertial 
waves. 
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B&Y focuses on groups of arbitrary - but finite - amplitude near-inertial waves. 
This choice of focus is motivated in part by the fact that the amplitudes of the 
near-inertial wave velocities observed in the ocean tend to be on the order of 20 
cm s-l. Thus, by allowing for large amplitudes, B&Y are able to study strong, and 
hence realistic, shears in the velocity field of the near-inertial wave. Their approach is 
complementary to that offered by the induced-diffusion approximation, which owing 
to the inherent assumption that only those waves with velocity close to the group 
velocity will resonate and interact with the near-inertial wave, is only suitable for 
near-inertial long waves with small-amplitude velocities, with peaks on the order of 0.1 
cm s-l. See McComas & Bretherton (1977) for the original treatment of the induced- 
diffusion approximation and, e.g., Meiss & Watson (1982) for further analysis. 

The upper-ocean observations of near-inertial waves reported by Pinkel (1983) also 
motivated the model in B&Y. In particular, Pinkel (1983) observes that near-inertial 
motions are vigorous in the first few hundred metres below the surface and that only 
a few near-inertial-wave groups are present at any given time. 

In B&Y, it is first shown that in the frame of a single, infinite progressive near- 
inertial wave of finite amplitude, internal waves of infinitesimal amplitude are either 
trapped by this background wave or propagate freely past it without interacting 
with it. We shall refer to a near-inertial wave as the background wave and to all 
higher frequency internal waves as test waves, respectively, and our analysis will be 
performed in the frame of the background wave. In the case of untrapped test waves, 
the test waves can either propagate with a group velocity that is faster than the phase 
velocity of the background wave, in which case their vertical wavenumber is small, 
or their group velocity can be smaller than the phase velocity of the background 
wave so that they are overtaken by its phase oscillations, in which case they have 
a large vertical wavenumber. Then, upon shifting attention to a localized packet of 
near-inertial waves, it is shown that the wavenumber of an initially freely propagating 
small-scale (or test) wave may be permanently altered by trapping in and subsequently 
detrapping from the large-amplitude background wave. 

The two main conclusions of B&Y may be stated as follows. First, permanent 
changes in the vertical wavenumber of the test waves are larger when their group 
velocity (cg) is different from, but sufficiently close to, the phase velocity (c) of the 
background wave than when there is exact resonance (cg = c). Second, numerical 
observations show that, as a result of an interaction, a permanent decrease in vertical 
wavenumber of the internal wave appears to be more likely than an increase. 

Adiabatic separatrix-crossing theory is ideally suited to quantify this wavenumber 
transport. There are special trajectories in the frame of the near-inertial wave 
that act as boundaries between the states of trapped internal waves and of freely 
propagating internal waves. These natural boundaries correspond to separatrices 
in the associated phase spaces, and the large-amplitude changes in the positions of 
these boundaries/separatrices are responsible for the large, permanent changes in the 
wavenumbers of small-scale internal waves. 

The fundamental idea underlying adiabatic separatrix-crossing theory is readily 
illustrated on a classical nonlinear planar pendulum : 

ij +Asinq = 0, 

where q is the angle the pendulum makes with the vertical, A = g/L', g is the accel- 
eration due to gravity, L' is the pendulum's length, and the dot denotes the derivative 
with respect to time, t, the independent variable. Orbits are either librational or ro- 
tational, and the boundaries dividing these two states are separatrices corresponding 
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to the infinite time motion in which the pendulum starts and returns to the inverted 
(unstable) equilibrium. The phase-space area enclosed by the separatrices depends on 
the magnitude of A. 

Now, with the choice of A = A(z = E t ) ,  for example with A(z)  = Aoexp[-z2/2], 
or any other smooth, positive, slowly varying function, one models the pendulum 
potential with a prescribed slowly varying amplitude. The adiabatic invariant of a 
trajectory can be represented as an asymptotic expansion in powers of E, and the 
leading-order term is the orbit’s action. See Kruskal (1962) and Henrard (1993) for 
the development of the general theory. By definition, the orbit’s action is 

J(h,  7) = dq P ( q ,  h, z), f 
where the initial point on the orbit lies on the contour of the Hamiltonian H(p,q ,z )  
frozen at the time z. The function P(q,  h, z), which is the solution of H ( P ( q ,  h, z), q, z) = 
h(J,  z), explicitly gives the momentum along this contour and o o ( J ,  z) = ah/aJ(J ,  z) 
is the frequency of the orbit. From this definition, the orbit’s action is seen to be the 
phase-space area it encloses. Furthermore, the theory of the adiabatic invariant states 
that, as long as the ratio E / ~ o ( J ,  z) is small compared to one, the real orbit will evolve 
in such a way that it always stays close to a contour that has this same action. This 
happens despite the fact that the shape and location of these contours changes by a 
large amount as z changes in time. 

For example, consider an initially librating pendulum and let the area enclosed by 
the separatrices be a locally decreasing function of z. As long as the area enclosed by 
the separatrices is larger than the orbit’s action, then the theory can be applied since 
the frequency o o ( J ,  z) is bounded away from zero there. However, at the time z, = Et, 
when the area enclosed by the separatrices equals the action of the orbit, wo(J,z) 
vanishes and adiabatic invariance theory breaks down, since the ratio c / o o ( J , z )  is 
infinite and the series becomes disordered. From this point on, the area enclosed 
by any of the contours in the librational regime is smaller than the action of our 
orbit, and therefore there no longer exists a contour in the librational regime for our 
orbit to be close to. Our orbit is forced to cross the separatrix, changing its type 
from librating to rotating (either clockwise or counterclockwise). Furthermore, the 
definition of our orbit’s entire adiabatic invariant, including its leading-order term 
the action, must also change. z, is referred to as the pseudo-crossing time. 

Extending the classical theory of adiabatic invariance, adiabatic separatrix-crossing 
theory (see Cary, Escande & Tennyson 1986 and Neishtadt 1986) states that the value 
of the new adiabatic invariant the orbit will have after the crossing is, to lowest order, 
the value of the separatrix action in the new phase-space regime evaluated at the 
pseudo-crossing time. The separatrix action in a given phase-space region is defined 
to be the action associated with the separatrix. This central result from adiabatic 
separatrix-crossing theory forms the basis for our analysis. In fact, we shall restrict 
our analysis to the lowest order, which corresponds to the limit in which our small 
parameter vanishes. However, we remark that in principle, one can calculate the 
new invariant to as high an order as desired. The O(E)  corrections, which have been 
calculated for the general case, depend on the orbit’s phase at crossing, see Cary et al. 
(1986) and Cary & Skodje (1989). 

The physical mechanism which results in permanent changes in wavenumber for 
the internal waves of our problem has a direct analogue in the relatively simple 
motion of the pendulum discussed above. We begin with a pendulum that is rotating 
counterclockwise with some action less than the action of the separatrix at maximum 
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amplitude. We will assume that the amplitude is initially zero and then grows and 
decays as the sample function A ( z )  given above. Initially, the pendulum stays in 
the rotational regime as the amplitude grows. Eventually, there comes a time, the 
(first) pseudo-crossing time, at which its action equals the area enclosed by the upper 
separatrix. This is the time at which its trajectory will cross the upper separatrix, 
and, with a newly defined action, it commences to librate and classical adiabatic 
invariance theory applies again. Now, after a while the amplitude of the potential 
decreases and so by the separatrix-crossing theory we know that the trajectory 
must cross a separatrix (and re-enter the rotational regime) at the second pseudo- 
crossing time when the area enclosed by the separatrices decreases to the value of 
the librating pendulum’s action. Whether the final rotational state of the pendulum 
after detrapping is clockwise (below the separatrices) or counterclockwise (above the 
separatrices) depends on the phase of the trajectory at this second pseudo-crossing 
time. Thus, a permanent change in the rotation type of the pendulum is possible, and 
indeed is as likely as the ‘no-change’ outcome. 

The analogous phenomenon arises in the dynamics of internal waves and is the 
mechanism responsible for permanent changes in their vertical wavenumbers. Un- 
like the pendulum separatrices, however, the separatrices in our model are highly 
asymmetric. As a result, more phase-space area gets transported across the upper 
separatrix than across the lower one during the interaction with a localized back- 
ground wavepacket. In turn, this difference in the amount of phase-space area 
transported directly implies that the internal waves have a higher probability of 
detrapping with a lower wavenumber than with a higher wavenumber. 

While we treat a specific problem in this paper, the methods and approach we use 
are quite general. In particular, they are applicable to any situation in which small- 
scale, small-amplitude waves, whether atmospheric, oceanic or laboratory, encounter 
vigorous large-scale undulating flows. The most striking feature of our method is that 
it remains valid for arbitrarily strong background flows. However, the parameters 
governing the structure of this background flow must either ( a )  vary slowly in time 
compared to the natural oscillation period of the waves within the flow, or ( b )  vary 
in position only on scales long compared to the wavelength of the undulations. 

Some of the methods used here have been successfully applied to other problems. 
For example, early work on resonant wave-particle dynamics lead to quasi-linear the- 
ory, see e.g. Drummond & Pines (1964), which assumes a weak background flow and 
is analogous to the induced diffusion approximation. Later, Fuchs et al. (1985) pre- 
sented numerical simulations of test particles interacting with a coherent wavepacket 
(directly analogous to the model developed by B&Y and used here), showing that 
quasi-linear theory worked well for a narrow, small-amplitude wavepacket, while in 
contrast a broad, large-amplitude wavepacket yielded dramatically different dynamics 
due to particle trapping and detrapping. This new dynamics was characterized by mo- 
mentum scattering plots analogous to our figures 5 and 9. Bruhwiler & Cary (1992) 
used adiabatic separatrix-crossing theory to quantify the results of Fuchs et al. (1985); 
subsequently, Mora (1992) used these methods to treat particles in a relativistic 
wave. 

A detailed separatrix-crossing analysis has also been carried out in the context of 
fluid particle dynamics in shear layers. Meiburg & Newton (1991) show that escape 
times and other mixing quantities for fluid particles in a viscously decaying vortex 
may be obtained using a separatrix-crossing type analysis related to that used here. 

This paper is organized as follows. The Hamiltonian governing the ray-theoretic 
model is developed in 92. In 93, the lowest-order terms of the adiabatic invariants 
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of all orbits are calculated. Sections 4 and 5 contain the main results of this paper. 
First, the separatrix-crossing analysis is carried out. Then, the wavenumber transport 
and the greater likelihood of permanent decreases in vertical wavenumber of the test 
waves are quantified. The geometric interpretation of the trapping and detrapping 
probability formulae, based on adiabatic Melnikov theory, is presented in $6. Finally, 
in $7, the effect of relaxing various assumptions inherent in the model and extensions 
to multiple interactions are discussed. 

Note. The quantity identified as an orbit’s action here (and in the context of 
classical mechanical systems with finitely many degrees of freedom) is completely 
unrelated to the wave action. In the eikonal approximation, it is assumed that each 
test wave has associated with it some infinitesimal, but definite, amount of intrinsic 
wave action. This quantity is assumed to be invariant. By contrast, once the eikonal 
approximation has been made, the infinitesimal test wave is treated as a particle. The 
action of an orbit, or trajectory the test wave executes, is then defined in terms of 
quantities associated with the trajectory in the phase space, and this orbital action 
can change by large amounts. 

2. Development of the Hamiltonian 
A general derivation of the Hamiltonian function which yields the eikonal equations 

of motion, starting from a Hamiltonian description of the fluid flow, has been 
presented by Henyey & Pomphrey (1983). The resulting Hamiltonian is given by a 
dispersion relation : 

(2.1) 
The function H is equal in value to the local frequency o of the small-scale, high- 
frequency test waves which obey the eikonal equations of motion. The average posi- 
tion x of a given test wave is the canonical coordinate, while the central wavenumber 
k = (kx,  k,, k,)  of this test wave is its conjugate momentum, and time T is the inde- 
pendent variable. The local frequency consists of the intrinsic frequency 6 and an 
advective term arising due to the background fluid velocity u. 

For oceanic internal waves, the intrinsic frequency satisfies the dispersion relation 

H ( x ,  k, T )  = 6 ( ~ ,  k )  + U ( X ,  T )  - k .  

N2(z)ki  + f 2 k ;  
ki  + k; , 

d2(x, k )  = 

where ki = kf + k i ;  N is the buoyancy or Brunt-Vaisala frequency; and f is the 
inertial frequency. For our analysis, we follow B&Y. In particular, we assume that N 
and f are constant, and we employ the midfrequency approximation, which is valid 
when f2ah24N2. In this limit, the internal wave dispersion relation becomes 

We adopt the sign convention that 6 is positive, while the vertical wavenumber k, 
is negative, corresponding to upwardly propagating internal waves. Strictly speaking, 
(2.3) is only valid in the limit that l a I k , I / k h a N / f ;  therefore, given appropriate 
oceanic values for N and f ,  the allowed range for [k,( is constrained within limits 
determined by the magnitude of kh. In $7, we relax the midfrequency approximation 
and show that the results obtained using the full dispersion relation are similar to 
those presented here. 
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function 

The envelope function g(z/2L) is a function of unit width and height; thus the 
wavepacket’s envelope varies over the length scale L with maximum value UO, and 
this envelope is assumed to be stationary (i.e. zero group velocity), which, as is 
explained in B&Y, is consistent with an infinite horizontal wavelength and intrinsic 
frequency equalling f .  Furthermore, the analytical techniques we employ here are 
applicable for any smooth envelope function g and for any smooth field components. 
In this work, we choose g to be a Gaussian and the components to be cosine and 
sine functions mainly to have a concrete prototype. Also, with this choice, the 
wavepacket is localized in a general fashion, and the wave is circularly polarized. 
Other polarizations may be achieved by changing signs on, e.g., the y-component of u. 

In order to completely specify the choice of the velocity field u given above, we 
make the following additional assumptions and observations. First, the phase velocity 
c and the vertical wavenumber b of the wavepacket are assumed constant. Hence, 
we have the approximate relationship bc FS f, since the wavepacket is nearly inertial. 
Second, following B&Y, we assume L w 27c/b, so that our wavepacket consists of 
several wave oscillations propagating within a stationary, slowly varying envelope. 
Third, both k, and k, are constants of the motion, because u was chosen to be 
independent of x and y. Hence, we may treat kh as a parameter, rather than as a 
dynamical variable. In addition, we can neglect the horizontal dynamics and recover 
the vertical equations of motion arising from the full Hamiltonian of (2.1) with a 
simple one-and-a-half degree-of-freedom Hamiltonian, by removing the y-component 
of u and introducing a constant phase 40 = arctan (k,/k,) in the x-component of u. 

D. L. Bruhwiler and T. J .  Kaper 

Following B&Y, we model the velocity field of the near-inertial wave packet by the 

u(x, 7’) = uog(z/2L) {cos[b(z - cT)]jZ - sin[b(z - c T ) ] ~ } .  (2.4) 

Finally, we introduce non-dimensional variables : 

(&) lI2 , t = bcT FS f T, q = bz, m = k, (2.5 a-c) 

(2.5 d-f) 

Our m and p~ are the m. and p, respectively, of B&Y. 
The appropriate Hamiltonian is 

(2.5) 

where t is the independent variable, q is the dependent variable and m is the canonical 
momentum. The Hamiltonian function H is equal in value to 6. This Hamiltonian 
is the starting point of our analysis. The dynamics of this system are determined by 
the two dimensionless parameters po and E. We consider the regime where p~ is of 
order unity, while E is small. For completeness, the Hamiltonian equations of motion 
are 

1 
m H(q, m, t) = -- + pog(&q) cos(q - t + 4 0 ) ,  

dq BH 1 
- = -(q,m,t) = -, 
dt am m2 

(2.6~) 

dm dH 
- -  - --(q, m, t) = pOg(Eq) sin(q - t + 40) - EpOg’(Eq) cos(q - t + $0). (2.6b) 
dt 84 

Equations (2.6) are non-dimensionalized forms of the eikonal or ray equations. 
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FIGURE 1. (a )  A localized packet of background waves. The maximum wavepacket amplitude is 
b = 2.0 and the dimensionless length parameter is E = 0.1. (b)  Snapshot of the phase-space of the 
Hamiltonian one would obtain by transforming into the frame moving at the phase speed of the 
background wave with b = 2.0 and E = 0.1. Only those Hamiltonian contours containing a saddle 
point (i.e. an unstable fixed point), are shown. ( c )  Actual trajectory (left to right) in q - rn space 
of a resonant test wave that gets scattered to a significantly smaller vertical wavenumber than it 
had initially. In between trapping and detrapping, it executes large-amplitude oscillations. Again, 

= 2.0 and E = 0.1. 

In figure l(a), we plot the envelope of the background wavepacket p,-,g(Eq) for p,-, = 
2 , ~  = 0.1 and g ( q )  Gaussian, and we plot the full phase oscillations, p,-,g(Eq) cos(q--t+ 
$o), for t = 4o = 0. This figure is a snapshot: as time advances, the phase oscillations 
will move to the right at the phase velocity, which is unity in our normalized units. 
Since the pseudo-energy (see Broutman & Grimshaw 1988) of a test wave is given by 
the product of its wave action and its frequency, the contribution of the background 
wavepacket to the frequency of a test wave acts essentially as a source of potential 
energy. Thus, the dips in the phase oscillations of figure l(a) are really potential wells 
in which test waves can become trapped. For more detailed discussions of the energy 
associated with test waves, we refer the reader to $2 of Broutman & Grimshaw (1988) 
and $3 of Henyey & Pomphrey (1983). 

Figure l(b) shows the contour plots in the q-m phase plane that one obtains from 
(2.6) by transforming to a frame moving with the phase velocity of the background 
wavepacket. As for figure l(a), we have chosen p~ = 2 , ~  = 0.1, and t = 40 = 0. 
In particular, figure l(b) shows only those contours which contain an unstable 
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equilibrium point, called an x-point or saddle point. Such contours are called 
separatrices, because they separate phase-space into regions in which trajectories 
have distinct topologies. For example, if we eliminate the time dependence from our 
problem, then the Hamiltonian (i.e. the frequency o of the test wave) is a constant 
of the motion, and all phase-space trajectories coincide with Hamiltonian contours. 
In this limit, the separatrix loops seen in figure l (b )  contain permanently trapped 
trajectories, while trajectories outside these loops circle a given separatrix loop once 
as they are reflected by the background wavepacket. Thus, these separatrix loops 
correspond directly to the potential wells seen in figure l(a). 

For the fully time-dependent problem, this simple picture breaks down: the Hamil- 
tonian is not a constant of the motion, phase-space trajectories do not follow Hamil- 
tonian contours, and the separatrices seen in figure l(b) are broken. However, a 
crude but physically useful picture of the dynamics can be drawn based on figure 
l(b). As time progresses, the separatrix loops move from left to right at the phase 
velocity, so a nearly resonant trajectory (i.e. Iml not too far from unity) will enter the 
picture from the left as some separatrix loop travels along with it, growing in time. 
When the separatrix loop becomes large enough, the trajectory becomes trapped in 
it: if the velocity of the trajectory was initially greater than unity (Irnl < l), then 
the trajectory traps into the loop from above; if its velocity was initially less than 
unity (Irnl > l), then the trajectory traps into the loop from below. Subsequently, the 
trajectory oscillates within the separatrix loop as it is ferried through the wavepacket. 
On the right side of the wave, where the loop is shrinking, the trajectory becomes 
detrapped. Depending on its phase, it will either detrap above or below the loop. 

This trapping and detrapping process is demonstrated in figure l(c) (again for 
po = 2 and E = O.l), which shows the phase-space trajectory of a test wave that traps 
into a loop from below, executes large-amplitude oscillations, then detraps above 
the loop. In this case, the net result of the wave-wave interaction is a permanent 
change in the vertical wavenumber to a smaller absolute value. In order to obtain a 
rigorous overview of the test wave dynamics in this problem, we must transform the 
Hamiltonian into a form where adiabatic invariance theory can be applied; this is 
done in the next section. 

3. Adiabatic invariance theory 
Adiabatic invariance theory (Kruskal 1962 and Henrard 1993) is useful in the limit 

that resonant test waves execute many oscillations when traversing the background 
wavepacket, because it allows one to average over these fast oscillations, thus simpli- 
fying the analysis. An equivalent statement is that the theory requires variations in 
the envelope of the localized background wave, as perceived by a trapped trajectory, 
to be slow relative to the bounce time in the wave. Thus, for adiabatic theory to be 
applied, the Hamiltonian must be a slow function of the independent variable, usually 
the time. In contrast, our Hamiltonian has its slow variation in the spatial variable 
q, as is indicated formally by the dependence of the background wave envelope on 
~ q ,  where E is small. Therefore, we first transform to a new Hamiltonian where q 
is treated as the independent variable, then we proceed to calculate the adiabatic 
invariant. 

3.1. Preliminary transformations of the Hamiltonian 
We treat q as the independent variable simply by reversing the roles of the two 
conjugate pairs (4, rn) and ( t ,  --H) (see e.g. Percival & Richards 1982). The negative of 
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the Hamiltonian, which we denote by the symbol 5- in order to emphasize its new 
role, becomes the new momentum and t its conjugate variable. Physically, -5- is the 
non-dimensionalized frequency of the test wave. After this role reversal, the negative 
of the vertical wavenumber serves as the new Hamiltonian. Hence, we denote it by 
H ,  and we have H ,  = -m. 

The functional form of this new Hamiltonian, 

is obtained by solving the equation H(q,-H,,t) = -5- for H,. Again, adiabatic 
theory requires that the Hamiltonian depends on the independent variable (here q )  
only on the slow scale and not on the fast scale, while the Hamiltonian (3.1) has its 
q variation both in the slowly varying amplitude function g ( q )  and in the rapidly 
varying phase (q  - t + $0 = 5). A canonical transformation making the phase l 
the new dependent coordinate eliminates this fast variation in q. We achieve the 
transformation from old variables ( t ,  0-, q )  to the new variables (5, Q, q )  with a 
generating function of the second kind (see e.g. Percival & Richards 1982): 

&(t, 5 , q )  = (4  - t + 4o)Q,  ( 3 4  

which depends on the old coordinate t and the new momentum 0, as well as the 
independent variable q. 

The new coordinate is 5 = aFZ/a5  = q - t + $0, as desired. (Our 5 differs by a 
factor of 27c from the 5 of B&Y.) The relationship between the old and new momenta 
is given by 5- = aF2/at  = -0. The new Hamiltonian is given by 

+ 5. (3.3) 
1 - - 

5 - Pog(&q) cos(5) 
This slowly varying Hamiltonian is equal in value to 52 = 5 - m, the (non- 
dimensionalized) absolute frequency of a test wave in the frame of the background 
inertial wave. This is a dimensionless form of the 52 that appears in B&Y. The 
Hamiltonian equations of motion are 

( 3 . 4 ~ )  

Equations (3.4) are dynamically equivalent to (2.6). 
Figure 2 shows contours of this transformed Hamiltonian in the new 5 - 0 phase 

space, which is periodic in 5 ,  with period 27c. In figure 2(a),  we have chosen 
p = p o g ( q )  = 2. The contours are labelled with the corresponding value of the 
Hamiltonian (i.e. a), where 521 = p + 2 = 4.00,522 = 2.96, and 523 = 2.15. The 
contour labelled 521 is a separatrix. We call the phase-space region above the 
separatrix region a, and phase-space trajectories in this region are said to be passing 
above. Along all trajectories passing above, 52 > p + 2 and Iml < 1 (i.e. the group 
velocity of the corresponding test wave is greater than the phase velocity of the 
background wavepacket). The region below the separatrix is called region b, and 
trajectories in this region are said to be passing below. For all trajectories passing 
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FIGURE 2. (a) Phase space of the transformed Hamiltonian Ha given by (3.3) and p(1 )  = 2.0. The 
contour with 52 = 521 = 4.0 defines the separatrices, while the contours 522 = 2.96 and 523 = 2.15 
represent trapped trajectories. Region a lies above the upper separatrix, region b below the lower 
separatrix, and region c inside. (b )  Phase space of the transformed Hamiltonian Ha given by (3.3) 
but this time with p(1) = 1.0. Also, sZ1 = 3.86, 522 = 3.0 and 523 = 2.15, where the middle contour 
defines the separatrices. ( c )  Phase space of the transformed Hamiltonian HQ given by (3.3) with 
p(1 )  = 0.5. Also, 521 = 3.84, 522 = 2.9 and 523 = 2.5, where this time the latter contour defines the 
separatrices. 

below, 52 > p + 2  and Irnl > 1. Finally, we call the phase-space region inside the 
separatrix region c,  and trajectories in this region are said to be trapped. For trapped 
trajectories, 52 c p + 2 and Irnl- 1 changes sign periodically as the corresponding test 
wave oscillates within the potential well. 

In figure 2(b), for which we have chosen p = 1, we show three new Hamiltonian 
contours, again labelled 521, 522, and 523. For reasons which will become clear in $3.2 
and $5 below, we have chosen these values of 52 such that corresponding contours in 
figures 2(a) (as well as 2c) enclose the same phase-space area. For example, the two 
contours labelled 523 in figures 2(a) and 2(b), although they have different shapes, 
enclose the same amount of phase-space area. Likewise, the contour labelled 522 
in figure 2(b), which is a separatrix, encloses the same phase-space area as does 
the corresponding contour in figure 2(a), which is not a separatrix. Finally, the 
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two contours in figure 2(b) labelled sZ1, along both of which the Hamiltonian is 
equal to 52 = 521, enclose between them the same amount of phase-space as is 
contained within the separatrix of figure 2(a). It is very important to note that 
the correspondingly labelled contours in figures 2(a) and 2(b) do not have the 
same values of 52:  in figure 2(b), we have sZ1 = 3.86,522 = p + 2 = 3.00, and 
523 = 2.51. 

Figure 2(c) is a similar plot, for which p = 0.5. The separatrix, labelled 0 3 ,  contains 
the same phase-space area as do the contours labelled 523 in figures 2(a) and 2(b). 
The area between the two contours labelled 522 is equal to the area enclosed within 
the separatrix of figure 2(b), and the area between the two contours labelled 521 
is equal to the area enclosed within the separatrix of figure 2(a). For this figure, 
0 1  = 3.84,522 = 2.90, and 523 = ,u + 2 = 2.50. 

If we eliminate the slow dependence of the background wavepacket on q (i.e. we 
have an infinite wavetrain), then the Hamiltonian (i.e. the absolute frequency 52 of 
any given test wave) is a constant of the motion, and all phase-space trajectories 
coincide with Hamiltonian contours. In this limit, the separatrices of figure 2 contain 
permanently trapped trajectories, while trajectories passing above advance continu- 
ously to the right, and trajectories passing below move to the left, as described in the 
Introduction. 

For the full problem, this simple picture breaks down: the Hamiltonian is not 
a constant of the motion, phase-space trajectories do not follow Hamiltonian con- 
tours, and the separatrix is broken. However, separatrix-crossing theory uses the 
concept of a well-defined separatrix (which strictly exists only in the limit E + 0) 
for small but finite values of E. In this dynamical picture, as a nearly resonant 
trajectory interacts with the background wavepacket, the separatrix will grow to 
some maximum size, which is governed by the maximum wave amplitude PO, then 
shrink again and disappear. When the separatrix becomes large enough, the tra- 
jectory traps: if the group velocity of the associated test wave was initially smaller 
than the phase velocity of the background wavepacket, then the trajectory traps 
into the separatrix from below; otherwise, it traps in from above. Subsequently, 
the trajectory oscillates within the separatrix as it is ferried through the wavepacket. 
On the other side of the background wavepacket, as the separatrix is shrinking, 
the trajectory detraps. Depending on its phase, it will either detrap above or 
below. 

This trapping and detrapping process is demonstrated in figure 3, which shows 
the phase-space trajectory of a test wave that traps in from below, executes large- 
amplitude oscillations, then detraps above. This is the same trajectory as was shown 
above in figure l(c), but here we are showing it in the transformed phase space. In 
this case, the net result of the wave-wave interaction is a permanent increase in the 
test wave frequency (or pseudo-energy), which corresponds to a permanent reduction 
in the absolute value of the vertical wavenumber. In the next subsection, we calculate 
the adiabatic invariant and discuss how and when trapping and detrapping of a 
trajectory occurs. 

3.2. Calculation of the adiabatic invariant 

Given a Hamiltonian that varies slowly with its independent variable, such as 
H s 2 ( < , 0 , i  = ~ q )  with ~ a l ,  there exists an adiabatic invariant, see Kruskal (1962) 
and Henrard (1993), which can be written as a power series in E .  The lowest-order 
term in this series, commonly called the action and denoted here by J ,  is the loop 
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FIGURE 3. The trajectory of the same resonant test wave shown in figure l(c) but now 

seen in the phase space of the transformed system. 

integral of the canonical momentum around a phase-space trajectory: 

(3.5) 

where Q (i.e. the value of the Hamiltonian) and 1 (i.e. q, the average vertical position 
of the test wave within the envelope of the background near-inertial wave) are held 
constant during the integration. The integral is evaluated in the direction of test wave 
motion. 

The functional form of the canonical momentum, which is the (non-dimensionalized) 
frequency of the test wave, 

is obtained by solving the equation Ha(<,6+,1)  = Q for O+, where p(1) = b g ( A ) .  
We note that Q+(Q,1, 5) is equal in value to the Hamiltonian we started out with, 
H(q,  m, t )  of (2.5), but it appears in a new role with a new functional form. 

Since the phase space trajectory of a test wave that is trapped within the sinusoidal 
oscillations of the background wavepacket contains loops, the function 6* has 
branches. The upper branch 6+ corresponds to a test wave with an instantaneous 
vertical group velocity greater than the phase velocity of the background wavepacket 
(Iml < 1,t increasing in time). In contrast, the lower branch 6- corresponds to a test 
wave with an instantaneous vertical group velocity less than the phase velocity of the 
background wavepacket (Iml > 1,5 decreasing in time). 

The action for trajectories passing above, denoted by J,, is calculated by evaluating 
the integral of (3.5) from 0 to 2.n, using 6+. The action for trajectories passing below, 
denoted by Jb,  is calculated by evaluating this integral from 2.n to 0, using &-: 
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J a , b ( n ,  A) = k71.0 + ((Q + p - 2)(Q - p + 2))’12 

I7 ( ” k ) ]  (3.7) 
2Q(Q + p + 2)  

(a + p - 2)(Q - p + 2 )  0 - p + 2’ 
where 

and + is used for J ,  and - for Jb .  The action for trapped trajectories, denoted by J,, 
is calculated by performing a loop integral, using both branches of ~ 5 ~ .  For reasons 
involving the behaviour of elliptic integrals, J ,  has two functional forms; the first 
is denoted by Jcl, while the second, which is required only when p(A) - Q > 2, is 
denoted by Jc2 : 

J,l(Q,A) = 4(2p)l12 

J , 2 ( Q ,  A) = 2 ((Q + p + 2)(-Q + p + 2))’/2 

I7 (’ i- - k ’ ) ]  (3.8b) 
8Q 

K ( k ’ )  - 
4 

a - p - 2  (0 + p  + 2)(Q - p - 2)  Q + p + 2’ 
where 

(Q + p + 2)(Q - p - 2 )  
(Q + p - 2)(Q - p + 2 )  k‘(Q, A) = 

and the A-dependence arises only through p(A),  and we caution that the prime does 
not signify a derivative. The functions K ( k ) ,  E(k) ,  and 17(a2, k )  are complete elliptic 
integrals of the first, second and third kind, respectively, see Byrd & Friedman (1954). 
Equations (3.7) and (3.8) were required to make figure 2(a-c) and figure 4. 

There is a simple geometric interpretation for J,(Q,i l ) :  for any given value of p(A),  
it is the phase-space area enclosed by a Hamiltonian contour of value Q, where 52 is 
the current value of the absolute frequency for the trajectory of interest. The meaning 
of this statement becomes clearer upon consideration of figure 2. We consider a 
trajectory initially close to the contour labelled 0 3  in figure 2(a),  when p(A)  = 2. 
We then suppose that p(A) decreases slowly from 2 to 1 .  Owing to the approximate 
conservation of the adiabatic invariant, we can predict that, when p(A) = 1, the 
trajectory will be close to the contour labelled Q 3  in figure 2(b). 

The geometric interpretation of J for passing trajectories is slightly more compli- 
cated. The phase-space area enclosed between two Hamiltonian contours in regions 
a and b, with the same value of Q, such as the two contours labelled Q l  in figure 
2(b),  is given by J,(Q, A) + J b ( Q ,  A). Conservation of J,(Q, A) implies the following: 
for a passing above trajectory initially close to the upper contour labelled 01 in 
figure 2(b) when p(A)  = 1 ,  if p ( A )  decreases slowly to 0.5, then we know the tra- 
jectory will be close to the upper contour labelled Q1 in figure 2(c)  at the final 
time. Conservation of J b ( Q ,  A) leads to analogous predictions for trajectories passing 
below. 

We are most interested in nearly resonant trajectories, which cross the separatrix. 
The adiabatic invariant is discontinuous across the separatrix, because it is defined by 
a different integral in each of the three regions of phase space. We define the separatrix 



392 D. L. Bruhwiler and T. J .  Kaper 

action Y ( 1 )  to be the value of J on the separatrix. Taking the limit Q + p(1) + 2 of 
(3.7) and (3.8), we obtain 

Ya,b(A) = +271(1+ p/2) + 4 { (p/2) ' l2 + (1 + p/2) ar~tan[(p/2)'/~1} , (3 .9~)  
(3.9b) 

where the subscripts on Y are used to indicate the relevant region of phase space, 
and the A-dependence arises through p(A). One may readily verify (3.9) by taking the 
limit Q + p(1) + 2 in (3.6) and then applying the definition of the action given by 
(3.5). 

As long as a trajectory remains within the same region of phase space, its action is 
conserved to within O ( E / ~ , ' / ~ ) ,  even if it approaches and encounters a separatrix, see 
Cary et al. (1986) and Neishtadt (1986). Here, we have used p, = p(A,), where A, is 
the pseudo-crossing time. If such a trajectory is in region a, where a can be a, b or c, 
and the initial value of its adiabatic invariant is J,, then the pseudo-crossing time is 
defined by J ,  = Y,(Ax). If this trajectory then crosses the separatrix into region p, then 
the new value of its adiabatic invariant is given, to within O ( ~ / p , l / ~ ) ,  by Jp = Yp(1,). 

The detrapping process can be visualized geometrically with the aid of figure 2. 
We suppose that initially p(1) = 2, with a trajectory close to the contour labelled 
522 in figure 2(a), then p(1) decreases slowly to 0.5. At the pseudo-crossing time A,, 
given in this case by ~(1,) = 1, the trajectory is close to the separatrix shown in 
figure 2(b). Depending upon its phase, the trajectory will either detrap above the 
separatrix or below the separatrix. Supposing that it detraps above the separatrix, the 
trajectory will be found at the final time to be close to the upper 0 2  contour of figure 
2(c). An analogous scenario occurs for trajectories that trap when the separatrix is 
growing. 

Figure 4 shows the lowest-order adiabatic invariant (i.e. the action J plotted as 
a thick solid curve) for the trajectory seen previously in figure l(c) and in figure 3. 
The transition from a trapped to a passing trajectory, or vice versa, occurs when 
52 - 2 = p(1). Both p(1) (dashed curve) and Q - 2 (dotted curve) are also plotted 
in figure 4. The vertical axis on the left side of the plot corresponds to J ,  while the 
axis on the right side corresponds to the other two curves. The discontinuities in J 
coincide with the crossing of these latter two curves. Except for these discontinuities, 
the action J is approximately constant (it varies only by O(E))  while the background 
envelope, p(A), and the value of the Hamiltonian Q both vary by large (O(1)) amounts. 
J was calculated from (3.7) and (3.8). 

Adiabatic invariance theory and adiabatic separatrix-crossing theory are both 
asymptotic theories. The former works well for E sufficiently small, as long as no 
separatrix crossings occur. The latter works well for ~ / p , l / ~  sufficiently small, where 
pX'I2 is the exponentiation rate of orbits near the saddle point at the pseudo-crossing 
time. For smaller values of E, for example E = 0.05, the lowest-order adiabatic 
invariant J was observed (in figures not shown owing to space limitations) to be 
more nearly constant between separatrix crossings when the background wavepacket 
is broader and contains more phase oscillations. 

Finally, we obtain the form of the adiabatic invariant for test waves far from 
the background wavepacket, where the shear amplitude is vanishingly small. This 
calculation will prove useful in the next section. Taking the limit p(1) + 0 of (3.7) 
yields 

Y C ( 1 )  = Y a ( 4  + Yb(4, 

and (3.10) 
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FIGURE 4. The action J of the same resonant trajectory shown in Figures l(c) and 3 (solid curve, 
left-hand vertical axis). Also, p(1) (dashed curve) and s2 - 2 (dotted curve) for the same trajectory, 
both using the right-hand vertical axis. 

where we have used a lower-case j to indicate that this result holds only in the limit 
of zero shear. One may readily verify (3.10) by taking the limit p -+ 0 in (3.6) and 
then applying the definition of the action given by (3.5). We have chosen to write j 
as a function of the vertical wavenumber m rather than of the absolute frequency SZ, 
because we are interested in calculating the permanent change in wavenumber that 
can occur due to separatrix crossing. 

4. Wavenumber transport 
As was discussed in the previous section, in the limit that ~ / p ' / ~ ( A ~ ) 4 1 ,  the action 

changes only by O ( ~ / p i / ~ ) ,  even for trajectories that approach and encounter (but do 
not cross) a separatrix (Cary et al. 1986). Given this result and our calculation of j 
(3.10) which was obtained from J in the limit p(A) -+ 0, a semi-analytic calculation 
(to lowest order in E )  of the final value of m for a test wave that has interacted with 
a coherent background wavepacket is possible. As is shown below, such a calculation 
provides a clear picture of the underlying structure of test wave dynamics for this 
problem. 

Given a test wave with initial phase-space coordinates (zi,mi,ti = 0), with zi 
chosen such that the test wave is far below the background wavepacket (i.e. zero 
shear), and with mi such that a wave-wave interaction will occur, we wish to 
calculate the final wavenumber mf at a later time t f  = O ( E - ~ )  such that the test 
wave is now far above the background wavepacket (i.e. again zero shear). We will 
assume without loss of generality that this test wave is initially below the separatrix 
(Imil > 1). From (3.10), the initial value of the action associated with this test wave is 
Ji = jb(mi) = -2n/lmil. 

The action is preserved to within O(E)  right up to the first encounter with the 
separatrix, where the test wave becomes trapped in the background wavepacket. 
When this separatrix crossing occurs, the local background wavepacket amplitude 
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is px 3 p(Ax), and we know from (3.9) and from the constancy of the action that 
Ji = Yb(Ax), where Ax is determined implicitly by the relation 

271 

lmil 
-~ = -2741 + px/2) + ;Yc(nx). 

Since (4.1) cannot be inverted, we have only implicitly calculated pX(mi )  (and, hence, 
A x ) ;  this is why our calculation is only semi-analytic. 

At this point the test wave is trapped, with a new adiabatic invariant given to 
lowest order in E (i.e. a new action) by Yc(A) of (3.9), but now with p replaced by the 
px just calculated in (4.1). The test wave is ferried upward through the background 
wavepacket, until it detraps on the other side when the amplitude has decreased from 
its maximum po back down to px. At this point, depending sensitively on its phase, 
the test wave will detrap either above the separatrix or below the separatrix. 

Upon detrapping, the test wave will have a third adiabatic invariant, given to lowest 
order by either Y,(A) or Yb(A) of (3.9), again with p replaced by the px we calculated 
in (4.1): Jf w Ya(Ax) for detrapping above, or Jf NN Yb(Ax) for detrapping below. 
Since this final invariant Jf is approximately preserved as the test wave continues 
upward far beyond the background wave, we know also that Jf = j ( m f ) .  If the test 
wave detraps below the separatrix, then mf = mi to lowest order in E, and its vertical 
wavenumber is largely unchanged by the wave-wave interaction. However, if the 
test wave detraps above the separatrix, then an order unity change in the vertical 
wavenumber occurs, and the final wavenumber is given by 

1 1 lmfl+ jq = 2 +  

Equation (4.2) explicitly shows that this potential change in the wavenumber increases 
as the initial group velocity of the test wave is moved further off resonance (i.e. as 
/mil is moved further from unity and px correspondingly increases), which is directly 
contrary to the physical picture given by the induced-diffusion approximation in 
the weak-interaction limit, see e.g. McComas & Bretherton (1977). B&Y previously 
noted this behaviour. 

In figure 5, we test our understanding of the underlying test wave dynamics by 
comparing numerics with our semi-analytic prediction. Each plot shows the results 
of a numerical simulation in which an ensemble of 5 x lo3 test waves, initially far 
beneath the background wavepacket and distributed uniformly in -mi between 0.2 
and 2.9, interact once with a Gaussian wavepacket for which po = 2. The final 
wavenumber of each test wave, -mf, is plotted versus -mi. The solid lines were 
obtained via the semi-analytic procedure described above. 

Figures 5(a)-5(c) show rough agreement between theory and numerics for E as large 
as 0.2 and closer agreement the smaller E gets. We ran simulations with E as low as 
0.05. If we assume, following B&Y, that L w 271/b, where we recall that L and b 
are the scale length and wavenumber, respectively, of the near-inertial wavepacket, 
then 1 w 1/4n = 0.08. This corresponds to approximately eight undulations within 
the wavepacket, which appears to be consistent with the colour sonar plots of 
Pinkel (1983). The numerical data show a clear tendency for test waves with small 
initial wavenumber (Imil < 1) to remain at small wavenumber and for those with 
large initial wavenumber (Imil > 1) to move dramatically to smaller wavenumbers. 

The structure in figure 5, especially in figure 5(c), shows distinctly the two possible 
fates of a test wave in the limit of small E :  either an O ( E )  change in vertical 
wavenumber, or else an order unity change in wavenumber. The ‘wings’ of this bird- 
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FIGURE 5. Scatter plots showing the results (in each case) of simulating 5 x lo3 test waves for 
= 2.0 and (a) E = 0.2, (b)  E = 0.1, and ( c )  E = 0.05. In simulations with E < 0.05, all of 

the data points fell in extremely narrow bands about the bird-like structure. In simulations with 
0.5 > E > 0.2, the data points cover a large area, and only a few ‘scrolls’ were visible. In all cases, a 
canonical second-order leap-frog integration routine was used. 

like structure connect to the ‘body’ at the point -mi = -mf = 1, which corresponds 
to exact resonance between the internal waves and the background wavepacket. As 
one moves further from exact resonance, the wings extend further from the body, 
as predicted by our analysis. However, the wings are of finite length, and those 
test waves that are far enough off resonance will not interact resonantly with the 
background wavepacket. 

We can calculate the wavenumber limits beyond which these wave-wave interac- 
tions cannot occur, by equating the initial adiabatic invariant when far from the 
wavepacket with the separatrix action associated with the maximum wavepacket 
amplitude, b. Doing this both above and below the separatrix yields: 

Test waves having an initial vertical wavenumber /mil > l k f b l  or \mil < lMal will not 
interact resonantly with the background wave, because their phase-space trajectories 
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will never cross the separatrix. For this reason, the adiabatic invariant series of these 
non-interacting waves is preserved to all orders in E, and the difference between mf 
and mi is zero to all orders in E.  For po = 2.0, we find lMal = 0.275 and lMbl = 2.75, 
in agreement with figure 5. 

If we were to replot figure 5 for smaller values of po, we would see the wings 
decrease in length as the range of initial m resulting in resonant wave-wave interaction 
decreased. This process would continue until, when po reached zero, the plot would 
consist of a single, continuous line of unit slope. Likewise, increasing po would 
increase the length of the wings. 

5. Scattering to smaller wavenumber 
Our analysis of the eikonal or ray equations has shown that, given an ensemble 

of test waves that are both initially and finally far from the background wavepacket, 
many of the nearly resonant test waves experience a permanent change in vertical 
wavenumber. We have explained the physical origin of this phenomenon and, in 
particular, why this potential change in wavenumber becomes larger as a given 
trajectory is moved further off resonance. It is evident in figure 5 that the majority 
of test waves emerge from the wavepacket with a final wavenumber that is smaller 
in absolute value than unity, the resonant wavenumber. B&Y previously noted this 
tendency towards transport from larger to smaller wavenumber. 

In this section, we quantify this tendency. We begin by referring once more to 
figure 2. We suppose that p(A)  = 2 at the initial time, after which it decreases slowly 
until p(1) = 1 at the final time. From the discussion in $3.2, we know that, given 
an ensemble of trajectories near the 522 contour of figure 2(a) at the initial time, 
these trajectories will be found close to the separatrix of figure 2(b) at the final time. 
Likewise, an ensemble of trajectories near the separatrix of figure 2(a) at the initial 
time will be found outside the separatrix at the final time, some of them close to the 
upper 521 contour of figure 2(b) and the remainder near the lower 521 contour. 

Thus we see that the entire phase-space region between contours 521 and 522 of 
figure 2(a) is being transported through the separatrix as p(A) decreases from 2 to 1, 
and that finally this same phase-space area lies in between the 522 contour and the 
two 521 contours of figure 2(b). Inspection of figure 2(b) shows that the great majority 
of the expelled phase space lies above the separatrix. We conclude that for any 
ensemble of trapped trajectories which is randomly distributed in phase with values 
of 52 between 521 and 522 at the initial time, the majority of them will detrap above 
the separatrix. This is the physical origin of the wavenumber transport from larger 
to smaller absolute value. (It was shown above that trajectories passing above have 
vertical wavenumbers of absolute value less than unity, while those passing below 
have vertical wavenumbers of absolute value greater than unity.) 

It has been shown for general planar adiabatic Hamiltonian systems (Neishtadt 
1975; Yoder 1979; Henrard 1982, 1993; Cary et al. 1986) that, given an ensemble 
of trapped trajectories with the same action and uniformly distributed in phase, 
the fraction & = Ya’(Ax)/Yc’(Ax) detraps into region a, while the fraction l?, = 
Yb’(Ax) /  YC’(1,,) detraps into region b, where the prime here denotes differentiation 
with respect to 1: 

(5.1~) 
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FIGURE 6. The thick solid curve is the function &(A) given by (5.1), while the thick dashed curve 
is &,(A). The closed circles connected by thin solid lines show numerical results for &(A), with 
po = 2.0 and E = 0.03. The open circles connected by thin dashed lines show numerical results for 
&,(A), with po = 2.0 and E = 0.1. Each data point is from a simulation using 1000 test waves. 

These functions are plotted in figure 6. 
Comparison with numerics shows oscillations about this lowest-order prediction. 

This occurs because, although the test wave ensembles used for the simulations 
were initially distributed randomly in phase, phase correlations developed between 
the first separatrix crossing when they trapped and the second separatrix crossing 
when they detrapped. There are roughly 0(1/~) oscillations in the data which have 
0(1) amplitude. See figure 6, where the the solid dots represent the probability of 
detrapping above in the case of E = 0.03 and the open circles represent the probability 
of detrapping below in the case of E = 0.1. Such oscillations in the detrapping fraction 
have been observed previously (Cary & Skodje 1989; Bruhwiler 1990; Bruhwiler & 
Cary 1994). Studying them in detail requires calculation of the separatrix-crossing 
map through first-order in E.  

6. Geometric interpretation of the detrapping probability formulae 
The goal of this section is to give a geometric phase-space interpretation, based 

on the adiabatic Melnikov function, of the detrapping probability formulae (5.1). 
We show explicitly that the detrapping probabilities arise from certain ratios in the 
gap sizes in the broken separatrices. This geometric approach has been used by 
Robinson (1983) in the context of capture into resonance of satellites, and in the con- 
text of a time-dependent, two-dimensional mixing study by Kaper & Wiggins (1993). 
The earlier works of Neishtadt (1975), Henrard (1982), and Yoder (1979) also devel- 
oped the gap-size interpretation in the context of celestial mechanics. 

When E = 0, the system governed by the transformed Hamiltonian (3.3): 

1 
8 - p(A) cos(5) + 

HdQ, 5 ,  4 = 
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has a pair of unstable equilibria at (Gf(A), 0, A) and at (Gf(A), 27c, A) for each real value 
of A in the three-dimensional phase space 0 - [ - A. The unions of these saddles over 
all real values of A form two curves of fixed points: 

71 = u (Gf(4,0,A), 

y2 = u (Gf(4,2n, 4. 

Areal 

and 

Areal 

These curves y1 and y2 constitute normally hyperbolic invariant manifolds and are con- 
nected to each other by two-dimensional surfaces of heteroclinic orbits parametrized 
by the separatrix solutions (Gt(q7  A), {:(q, A), I ) .  These surfaces are the unions of the 
stable and unstable manifolds-FinallyFthe normal vector to the upper/lower separa- 
trix that is parallel to the line 5 = n and goes through the point a* on the separatrix 
is 

We now describe the relevant structures in the system with 0 < ~ a l ,  relating them 
to those of the E = 0 system. First, the normally hyperbolic invariant manifolds y1 

and y2 persist as slow, one-dimensional unstable orbits, which we denote y1,& and 
~ 2 , ~ )  respectively. Second, the stable and unstable manifolds of these slow orbits also 
persist, and they contain all of the orbits that are forward and backward asymptotic 
in time, respectively, to y1,& and ~ 2 , ~ .  We shall denote these perturbed manifolds by 
Wu(yl,,), WS(y1,&), Wu(y2,,), and WS(y2,&). Also, for a fixed I ,  we let aU, and US, denote 
the points where Wu(yl,,), and WS(y2,&), respectively, first intersect the normal vector 
n+(a+); and, similarly, a t  and US denote the points where Wu(y2,,), and WS(yl,&), 

respectively, first intersect the normal vector n-(a-). See figure 7. On the plane 
A =constant shown in figure 7, the distance between the points a; and US, is given by 

Similarly, the distance between the points a: and a t  is given by 

Here the adiabatic Melnikov integrals are 

In the case of our model, 

aH - d ( A )  cos(5) 
a1 (6 - p ( ~ )  cos([))2’ 
- _  

where ’ denotes the derivative with respect to A. Hence, we have 

M&) = d ( A )  ( +n + 2  ( - p:A)) + 2 arctan (F) ”’) , (6.5) 

where the coefficient in parentheses is positive for all real I ,  since it is monotonically 
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n d d  
FIGURE 7. Schematic of the Melnikov splitting distance calculation performed on 

a plane of constant 1 in $6. The distances d* = IIa; - a;II. 

decreasing for 1 < 0, has a positive minimum at 1 = 0, and is monotonically increasing 
for I > 0. 

Finally, we discuss the relation between the Melnikov geometric approach here and 
the separatrix-crossing theory used in the previous sections. Suppose that during the 
slow interval I to A1, where I and A1 are sufficiently close, the area enclosed by the 
separatrices decreases (the decrease below the upper separatrix, for example, being 
known as precisely Ya(I)  - Ya(I l ) ) .  Thus, since the vector field is incompressible, we 
know that this amount of phase-space area detraps through the upper and lower gaps 
from inside the separatrix region in that same interval of slow time. Keeping I fixed 
and sending 11 + I ,  we obtain the relations 

Ya’(I) = M+(I)  and Yb’(1) = K(1). (6.6) 

Formulae (6.6) relating the rate of change of the separatrix action (i.e. the rate of 
change of the area enclosed by the separatrix) to the adiabatic Melnikov function 
were established in Kaper & Wiggins (1991) and Kaper & KovaEiE (1994) for general 
singularly perturbed two-dimensional vector fields. They were also used in the context 
of a time-dependent, two-dimensional mixing study in Kaper & Wiggins (1993). 

These two splitting distance measurements, which represent the width of the gap 
between the stable and unstable manifolds as measured along the normal vectors 
n+(a+), - -  suffice to determine the detrapping probabilities (5.1) reported in the previous 
section. For a fixed value of 1, the probability of detrapping above the separatrix is 
given to leading order by the ratio of the uppergap width d+(a+,&) to the sum of the 
two gap widths. Likewise, the probability of detrapping below the separatrix is given 
to leading order by the ratio of the lowergap width d-(a-,&) to the sum of the two 
gap widths. 

7. Discussion 
In this final section, we discuss the dramatic dynamical effect of a vigorous large- 

scale near-inertial wavepacket on an entire distribution of high-frequency test waves. 
We also discuss the effect of relaxing various assumptions in the B&Y model, and 
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we indicate some possible extensions of the method developed here to the case of 
periodic interactions. 

7.1. Evolution of a distribution of test waves 
An analysis of test wave trajectories in the eikonal approximation does not itself 
constitute a transport theory. Of more direct interest is the time evolution of a 
realistic ensemble of waves. Here, we take a step in this direction by considering the 
evolution of an assumed initial distribution of test waves, each wave far below the 
near-inertial wavepacket, which encounter the wavepacket once and are finally far 
above the wavepacket. The initial distribution is chosen by letting the number of test 
waves per unit frequency interval scale like the inverse square of the frequency, each 
test wave having the same horizontal wavenumber kh. 

This initial distribution is shown as a dashed line in figure 8. Also seen in figure 
8 is the final distribution resulting from a numerical simulation (squares connected 
by dotted line) and the final distribution as predicted by our analysis (solid line). 
The numerical results were obtained by integrating every test wave through the 
wavepacket, then binning them according to their final frequency. The solid line 
was found via the following algorithm: (i) the initial wavenumber of each test wave 
was determined from the initial frequency; (ii) if this wavenumber was outside of 
the resonant or separatrix-crossing regime, it was left unchanged; otherwise, (iii) a 
potentially new wavenumber was calculated using the analysis of $4 above; (iv) the 
probability of detrapping from the wave with the new wavenumber or the original 
wavenumber were determined from (5.1); (v) a random number generator was used to 
decide, given these probabilities, whether or not a permanent change in wavenumber 
occurred; (vi) finally, each final wavenumber was converted back to a frequency, and 
the test waves were binned according to frequency. 

Figure 8 shows that the portion of the initial distribution which lies in the resonant 
regime of the background wavepacket is altered dramatically. An initial slope of -2 
becomes essentially flat. This result suggests that near-inertial wavepackets like those 
observed by Pinkel (1983) may have an observable effect on the local high-frequency 
internal wave spectrum. In addition, Marmorino, Rosenblum & Trump (1987) mea- 
sured intense activity within near-inertial wavepackets in the upper ocean, including 
groups of small-scale internal waves. They suggest that similar measurements might 
be able to address the effect of such wavepackets on previously existing small-scale, 
high-frequency waves. Of course, in experimental measurements, the spectra are 
averaged over the entire range of frequencies so that the contribution of the inertial 
waves to the spectrum is included, while in our analysis this contribution is ignored. 
A detailed comparison between theory and numerics would require observation of 
the internal wave spectrum in the midfrequency regime both in the presence and in 
the absence of near-inertial oscillations. 

Figure 8 also shows that our lowest-order (i.e. E -+ 0) analysis qualitatively agrees 
with the detailed numerical simulation. The strong oscillations seen in the numerical 
results arise from phase correlations and are directly related to the oscillations seen 
in figure 6. Although our analysis neglects these oscillations, it does capture the 
important effect, namely the dramatic transport of wave energy from lower to higher 
frequency. 

Since the pseudo-energy associated with a test wave is proportional to its frequency 
in the eikonal approximation, we see that the near-inertial wavepacket is pumping 
energy into the distribution of small-scale high-frequency test waves. Although our 
analysis is not self-consistent, in that we neglect the effect of the high-frequency 
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FIGURE 8. Here n, on the vertical axis denotes the number of test waves per unit frequency 
interval. The dashed line represents an initial test wave distribution with a frequency spectrum of 
6-*. The solid curve shows the frequency spectrum of this distribution after one interaction with 
the near-inertial wavepacket, as predicted by our lowest-order analysis for p~ = 2.0. The squares 
connected by a dotted curve show for comparison the results of numerically integrating the same 
initial distribution (m 5 x lo4 test waves) through this near-inertial wavepacket with p~ = 2.0 and 
& = 0.1. 

waves on the near-inertial wavepacket, it is evident from figure 8 that this nonlinear 
interaction would damp such a wavepacket. Broutman & Grimshaw (1988) perform 
a self-consistent analysis showing that a train of small trailing inertial waves is created 
by the interaction, and that their creation accounts for the energy balance. 

We note again that our analysis throughout this work has assumed the same 
horizontal wavenumber kh for all test waves. However, any realistic ensemble of 
internal oceanic waves would likely possess a spectrum of different values of kh, see 
e.g. Munk (1981), and hence, also a spectrum of different values of the maximum 
dimensionless amplitude p0, see (2.5). Therefore, an interesting extension of the work 
presented here would be to model an ensemble of test waves with an appropriate 
spectrum of values. 

7.2. Towards a more general model 
Here we consider the effect of abandoning the midfrequency approximation for the full 
internal wave dispersion relation. The test wave dynamics is found to be qualitatively 
the same. We also discuss the possibility of using a more general model for the 
near-inertial wavepacket. 

When the full dispersion relation is employed, the physical mechanism of trap- 
ping and detrapping is the same as when the midfrequency approximation is used. 
Moreover, we again find that a larger fraction of the test waves detraps to a smaller 
wavenumber than to a higher wavenumber. Finally, as illustrated by taking an oceanic 
Richardson number of order 1 and the ratio N/f = 75 in figure 9, the skeleton of 
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FIGURE 9. Scatter plot showing final us. initial wavenumber of 5000 test waves uniformly distributed 
in phase obtained from simulating the full dispersion relation with N/f = 75. In this simulation, 
po = 2.0 and E = 0.1. Compare to figure 5(b). 

the scattering plot is qualitatively the same as that obtained using the midfrequency 
approximation, and the spread of points about the skeleton looks similar. The main 
differences are that the scroll-like structure of the spread of points observed in the 
midfrequency case is seen less distinctly in figure 9 than in figure 5(b),  and that the 
region of resonant wavenumbers (i.e. the range between Ma and Mb) is slightly smaller 
for the full dispersion relation than in the case of the midfrequency approximation. 
We also note that the separatrices are functionally more complicated than those we 
obtained using the midfrequency approximation, and therefore the quantities needed 
in the adiabatic separatrix crossing theory may need to be obtained numerically. 

In addition to making the test wave dynamics more realistic by employing the 
full dispersion relation, one can also model more realistic background flows. A 
more realistic background flow might consist of a localized group of random waves 
with a very narrow spectrum, rather than a coherent wavepacket with a smooth 
envelope. A detailed analysis of such background flows is beyond the scope of 
this paper, but some general inferences can be drawn from related work in plasma 
physics. Graham & Fejer (1976) presented one-dimensional simulations of a charged 
test particle interacting resonantly with a random group of large-amplitude, infinitely 
long electrostatic waves, having a narrow spectrum of frequencies. 

The motion of a test particle in a single electrostatic wave is identical to the 
motion of a plane pendulum. The coherent analogue to the Graham & Fejer wave 
model would be the pendulum potential in the introduction of this paper, but 
with an amplitude A ( z )  which oscillates about some finite average value. In fact, 
Bruhwiler & Cary (1989) examined just such a model and found that resonant test 
particles repeatedly crossed the separatrix as they trapped in and subsequently de- 
trapped from the wave. Likewise, Graham & Fejer (1976) show phase-space trajecto- 
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ries of test particles that consist of three distinct regimes: (i) untrapped motion above 
the separatrix (i.e. particle velocity greater than mean phase velocity of the waves); 
(ii) untrapped motion below the separatrix (particle velocity less than wave phase 
velocity) ; and (iii) trapped motion, in which the particle executed large-amplitude 
oscillations around the mean phase velocity of the waves. 

We are interested here in a localized wave group rather than one of infinite extent; 
however, the work of Graham & Fejer indicates that the fundamental phenomenon 
of trapping and detrapping persists as a coherent wave model is generalized to a 
model with some degree of randomness. Thus, there is reason to expect that the 
wavenumber transport observed in this paper would not be qualitatively changed by 
such a generalization of the near-inertial wavepacket model. 

7.3. Multiple interactions 
The problem treated in the present paper involves only a single interaction with 
a large-amplitude wavepacket ; however, other situations may involve multiple or 
even periodic interactions. For wavepackets/potentials modulated periodically in the 
parameter A, it is known that the region in phase space swept out by the slowly varying 
separatrices is chaotic. Test waves/particles wander in an apparently stochastic 
fashion throughout this region, with any stable islands being tiny. Menyuk (1985) 
provided the first numerical evidence for this picture by simulating an ensemble 
of test particles slowly trapping and detrapping in a single standing wave. See 
Elskens & Escande (1991) and Kaper & Wiggins (1991) for the general theory, and 
see Kaper & Wiggins (1993) for an application to a time-dependent, two-dimensional 
mixing study. Kaper & Wiggins (1993) show that the region in which most of the 
mixing and stretching occurs is the separatrix- swept region. 

Both Bruhwiler & Cary (1989) and Bruhwiler & Cary (1994) study the dynamics 
of test particles trapping and detrapping in (i) a slowly modulated, large-amplitude 
single wave, and (ii) a series of broad, large-amplitude localized wavepackets. This 
work showed that an initial ensemble will evolve dramatically during the first few 
separatrix crossings, and subsequently will diffuse until it is uniformly distributed 
(in a coarse-grained sense) throughout the action-angle phase plane. Since there 
exists a canonical (i.e. area-preserving) transformation from the initial coordinate and 
canonical momentum to the action and its canonically conjugate angle, the diffusing 
ensemble also becomes uniformly distributed throughout the position-momentum 
phase plane. For example, if we placed the near-inertial wavepacket in a vertical 
one-dimensional box and forced an ensemble of high-frequency internal waves to 
interact repeatedly with this wavepacket, then the ensemble would eventually become 
uniformly distributed in the 5 - Q phase plane. In other words, if one were to 
make a profile for this situation that is analogous to the profile of the model in this 
paper presented in figure 8 (although we remind the reader that here the system is 
periodic, while in our model it is not), one would see that the spectrum is perfectly 
flat throughout the resonant frequency region. 

We are fortunate that Bill Young suggested this problem to us several years ago. 
In addition, we thank him for his continuing advice. We also thank: Darryl Holm for 
his advice; Isidoro Orlanski for several suggestions, in particular the idea of making 
figure 8; the organizers of the 1990 Colorado Days meeting; and two anonymous 
referees for their careful reading of the paper. D. B. gratefully acknowledges partial 
financial support from the Grumman Corporation. T. K. gratefully acknowledges 
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